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Abstract: Method of symmetric component is used in analysis of disturbances (short circuits and disturbances) and can 

be verified by computer simulation and measurement. It is based on possibility of making calculations simple by 

separating a three-phase asymmetric system into three symmetric systems and three single-phase schemes. It is very 

important for three-phase electrical networks with linear parameters and the same frequency in the network. The 

transition of quantities (ems, voltages and currents },,{ IVEF  ) from the asymmetric domain of a three-phase system 

to the symmetric domain is performed using transformation matrices. Expressions determined in the system of 

symmetric components are then superimposed on expressions corresponding to conditions of asymmetric system, and 

superposition is correct if electric quantities are of simple-periodic functions. 

The paper presents a new method based on analysis using symmetric component methods and diagnostic 

algorithms for the assessment of the most common disturbances in power grids. The adapted part of the MATLAB 

package psb.abc,part.mdl was used for method verification, and the obtained results in the form of diagrams and values 

of diagnostic functions arranged in the form of tables confirm the applicability of the proposed new diagnostic 

algorithm for analysis and assessment of steady states and disturbances in electrical networks. The proposed diagnostic 

algorithm enables the realization of the maximum number of diagnostic functions on the basis of which a scheme for 

diagnosing disorders with classical diode elements or a more modern scheme with microprocessor components can be 

realized. 

 

Index Terms: Electrical Network, Steady State, Disorder, Algorithm, Diagnostics. 
 

 

1.  Introducton 

When analyzing the condition and operation of three-phase electrical networks during disturbances, it is necessary 

to [1-4]:  

 

 Form a mathematical model of operation and/or a model of the state of the electrical network, and 

 Choose a method for solving differential equations of the state of the network in real time. 

 

Methods based on Ohm's and Kirchhoff's law are applicable, but also complex [5-7]. Other models for modeling 

and solving using mathematical transformations: Edith Clarck α , β , 0 , Kimbark x , y , z , Kogo r , s , t , as well as 

the method of symmetric components, are based on the introduction of new component.  

In the analysis of steady states, a matrix model with its own and mutual immittances (impedances/admittances) in 

nodes and branches are used for calculation. Model defines the topological structure of the network in relation to the 

reference voltage phasor. There are several methods for identifying matrices Z  among which there are [1], [5]:  



2 Diagnostics Algorithms for Analysis and Assessment of Steady States and Disorders in Electrical Networks  

Copyright © 2022 MECS                                                          I.J. Image, Graphics and Signal Processing, 2022, 4, 1-12 

 Network analyzer method. 

 Block transformation method. 

 Step-by-step transformation method. 

 Symmetric components method.  

 

For determining the matrix Z  in the first method, classicals approaches and network analyzers are used, and 

computer support in the second and third. Application of network analyzers and classical procedures for determining the 

matrix Z  make it difficult to distribute energy sources and transformers of non-standard transmission relationships. 

Matrix Z  must be determined by measurement or calculation from practically the same network analyzers of three-

phase AC network. 

In case of asymmetry, a three-phase network with linear element parameters and same frequency is decomposed 

into three independent symmetric systems and displayed using three single-phase schemes. Three groups of vectors 

represent symmetric "Foretsque" components. At the place of disturbance, there are impedances and voltages that are 

determined by transformations, where a scheme is assembled that is often complex and unsuitable for calculations. 

Impedances of network elements in system of symmetric components do not have to be the same. Assumptions are that 

symmetrical loading and disturbance are preceded by a state of idling and these are sufficient conditions to use single-

phase schemes for the calculation. 

The main types of disturbances in electrical network are short circuits and interference. When analyzing the 

consequences of disturbances, interesting quantities are current and voltage. Current is determined by the fault 

impedance, i.e. impedance of the element between two points connected across it and ability of the power supply to 

maintain voltage while a large current is flowing. Disturbances should always be avoided, not only because of the loss 

of energy and electricity, but also because there is a risk of fire (if electricity flows where it should not, overvoltage will 

be created). 

The goal of protecting electrical machines is to reliably detect a fault when it occurs, interrupt the flow of current 

to it, and rectify the fault. Fault is detected by magnitude of current and/or voltage, phase asymmetry and other unusual 

voltage differences between components. The sensitivity of the protection elements is characterized by a voltage-current 

curve showing the combination of current and duration that will cause the deviation [8-9]. 

The advent of computers has enabled development of algorithms for calculating and measuring symmetrical 

components to solve the problem of asymmetry in electrical networks, which is presented in this paper.  

The paper is organized as follows: Section 2 provides an overview of literature of related papers in the field of 

electrical networks in which they occur (failures, disturbances...), which can be solved by methods developed on 

transformation of symmetric or other components. Section 3 presents the method of symmetric components using 

Cartesian systems of real and imaginary coordinates. Section 4 presents a new method for estimating the most common 

disturbances in power networks using symmetric component methods and diagnostic algorithms, while algorithms of 

diagnostic functions are possible power grid with an inverter scheme for its implementation are given in Section 5. 

Simulation results of reference three-phase discrete analyzer for short-circuit fault type are given in Section 6. Finally, 

some concluding remarks are presented in Section 7. 

2.  Literature Review 

The problem of disturbances in electric networks is a problem that dates back to the very appearance of electric 

power networks. The theory of single-phase and three-phase electric machines was developed in the first half of the 20
th

 

century by Steinmetz [10], Richter [11], Kron [12], Veinott [13], Schuisky [14], Bedefeld [15], Alger [16], Fitzgerald et 

al [17], Lyon [18], Say [19]-which are just a few names from hundreds of engineers and scientists who have dealt with 

this topic and published papers in this field. In these works, stationary states and transient performance of electrical 

machines (disorders: failures, disturbances ...) are analyzed. The problem of using an electric machine in the electric 

power network is not new, and it mainly comes down to obtaining a sufficient value of reactive energy. 

Authors, Akagi [20], Mahfouz [21] and others in their works claim that on the basis of data on phase values, it is 

much easier to obtain fault characteristics, impedances, phase attitudes, etc ... However, in certain cases; due to the huge 

number of elements in electrical networks and constant changes in the state (changes in parameters in the windings of 

electrical machines or their presence or absence due to constant perturbation commutations), this is often not possible in 

reality. In that sense, by the nature of things, much greater possibilities for fault diagnosis are offered by methods 

developed on transformations of symmetrical or some other components (for example: Park, Bretford or Edith Clarck 

transformations for electric networks in which a number of static or rotating electric machine components are 

alternating electricity). 

Although the authors are in references [5], [8] and [22] proposed a procedure similar to the method used in this 

paper, the method is not referred to in detail and verified. Based on the insight into the mentioned references and other 

available literature to date, the authors have not found a suitable and sufficiently accurate, theoretical procedure that 

would adequately determine the problem of disturbances in electrical networks. For this reason, this paper was created, 
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and the simulation results, as well as the algorithm of diagnostic state functions for compensated networks with a 

neutral point confirmed that the proposed method and the obtained theoretical model are adequate and functional.  

3.  Symmetric Component Method 

The symmetric component method is a vector concept important for three-phase electrical networks presented in 

the Cartesian system of real and imaginary coordinates [9]. It is used in disturbance analysis and can be verified by 

computer simulation and measurement. Based on the application of Tevenen's theorem and superposition method in a 

linear system, it corresponds to reality, because symmetric impedances can be calculated/measured, and symmetrical 

components of currents and voltages can be determined. Voltage phase A is the sum of three components dV , iV
 
and 

0V . 

Operator â , Fig. 1, is the complex value of module 1 inverted by the angle vector 32 /π : 032 120 /πјeâ , 

0120jea  , 04 120 aâ ; 2a : rotation for    34322 /π/π   ((equivalent to the angle 32 /π  and 

0342 240 /πјeâ ); 3a : rotation for   π/π 2323   (equivalent to the angle 0 , 03 01â  and 

1203603  πjj eeaaaa


) etc... as followed in the Dekart axis system ( xy ) [23]. 

Relations for phase components can be written in the form:  

 

  0FFFF idA  , 0
2 FaFFaF idB  , 0

2 FFaaFF idC   (1) 

 

 

Fig. 1. Diagram of complex values â  

By solving the system of equations (1), symmetric components are obtained: 

 

  CBAd FaaFFF 2

3

1
 ,  CBAi aFFaFF  2

3

1
,  CBA FFFF 

3

1
0  (2)  

 

By the method of symmetric components, a three-phase asymmetric system with linear element parameters and the 

same frequency is decomposed into three independent symmetric vector systems with simple terms and presented with 

three single-phase schemes (for direct, inverse and zero system) of symmetric "Foretsque" components in matrix form:  
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Sizes EF  , V , I  (ems, voltages, currents) from the asymmetric domain to the symmetry domain - a system 

of symmetric components, they are transformed by transformation matrices.  

The solutions determined in the system of symmetric components are superimposed by expressions that 

correspond to the conditions of the asymmetric system, and the superposition is correct if the electric quantities are 

simple-periodic functions, Fig. 2, [5]. The impedances of the network elements in the system of symmetric components 

do not have to be the same 0ZZZ id  . 

 

 

Fig. 2. Asymmetry of a three-phase system and translation into a symmetric  

Impedances contain active resistances R and reactants X. Resistance dR
 
and iR

 
are as small as their impact on 

disorders. Due to different models of networks, zero-order resistance 0R
 
and grounding systems are different [1], [24-

27].  

The assumptions are that the load is symmetrical and that the disturbance is preceded by a state of idling, and these 

are sufficient conditions to use single-phase schemes for the calculation. 

4.  Development of Disorder Analysis Methods Using Symmetric Component Methods 

In the continuation of the paper, a new method based on correct analysis using symmetric component methods and 

diagnostic algorithms for the assessment of the most common disturbances in electric power networks is presented. The 

symmetric component method is used in the analysis of disturbances (short circuits and disturbances) [28] and can be 

verified by computer simulation and measurement [8], [22].  

They differ in the three-phase electrical network: 

 

 Simple asymmetry that occurs only in one place. 

 Simultaneous asymmetry, which can occur on several partial parts of the electrical network. 

 

Asymmetric regimes occur with collapsed symmetry voltage/current due to disturbances and different impedances 

of elements by phases [29-30]. Since the system is asymmetric only at the point of disturbance, in addition to the 

symmetrical power supply, the same load impedances are a condition of symmetry [9]. 

As mentioned in equation (1), relations for phase components  AF , BF , CF
 
are determined from symmetrical 

components and impedances: dZ  direct, iZ
 
inverse and 0Z

 
zero schedule which depend on the impedance of the 

network elements in relation to the location of the disturbance. Size transition F {phase values in the asymmetry 

domain: E  emf, V  voltage, I  current} in symmetric components in the domain of symmetry is performed using 

transformation matrices  S  and  1S . If the source creates only a direct component emf 0dÊ , 0iÊ , 00 Ê , 

voltages  dV , iV , 0V  and current
 
 dI , iI , 0I , then the equations for perturbation analysis correspond to a network 

with multiple sources, emf and internal impedances dZ , iZ  and 0Z  by Tevenen's theorem on equivalent generators: 
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where:  

 

dE , iE , 0E  are direct, inverse and zero component of emf source, 

dV , iV , 0V  direct, inverse and zero voltage component at the place of disturbance (according to ground), 

dZ , iZ , 0Z  direct, inverse and zero impedance component (from source to disturbance location), 

dI , iI , 0I  direct, inverse and zero current components. 

 

If 00 I
 
current system is balanced. When the network is symmetric (or asymmetric at the point of failure), 

symmetrical components are independent and can be solved separately. From single-phase schemes of symmetrical 

components corresponding to the equations from the source to the place of disturbance "m'm   the phase components 

are determined.  

The source creates only emf of direct order 0dÊ , 0iÊ , 00 Ê  and on place "m'm   act dA EE  , 

dB EaE 2  and dC aEE  . Left of "m'm   are values '
AV , '

BV , '
CV , '

AI , '
BI , '

CI  and '
Az , '

Bz , '
Cz , and right values 

"
AV , "

BV , "
CV  and "

AI , "
BI , "

CI . 

The impedances in the circuit of symmetrical components contain 2 members: left of "m'm   are impedance '
dz , 

'
iz
 
and 'z0 , and right of "m'm   are impedance "

dz , "
iz

 
and "z0 . Total values of impedances are: 

 

 "
d

'
dd zzZ  , "

i
'
ii zzZ  , "' zzZ 000   (5) 

 

Many previous papers have not listed methods for obtaining schemes of symmetric components after 

transformations, and the impression is that the schemes were obtained axiomatically, and not as a result of mathematical 

solutions. A big mistake is to show the sequence diagram of symmetrical components of direct, inverse and zero order 

currents and voltages, although the connection refers only to the impedance connection of these orders.  

The modules and directions of current and voltage are not the same: 0III id  , 0VVV id   [5]. 

5.  Disturbance Diagnostic Algorithms in Electrical Networks 

The symmetry of phase voltages in electrical network is disturbed by asymmetric loads and characteristics of 

transmission elements. If the phase voltages and currents are symmetrical, for analysis of a three-phase network, a 

calculation for one phase and repeating procedure for the other two phases whose voltages have the same modules, but 

are phase shifted by an angle, is sufficient q/2
 
( q number of phases). Apart from symmetrical stresses, the 

symmetry condition are the same load impedances.  

When analyzing the state and operation of three-phase electrical networks, mathematical models of operation and / 

or models of the state of electric network must be formed beforehand and methods for solving differential equations of 

real-time network conditions must be chosen. 

Networks with compensated neutral point have the largest number of possible states, so an algorithm for this type 

of network was written in the paper. According to the IEC standard for this network [31], data on phase quantities are 

required AV , BV , CV , AI , BI , CI
 
and zero voltage of 0V

 
and inverse iV

 
schedule. In compliance with the basic (first) 

condition that there are voltage and current transformers in each phase of the substation, inverse order filters and sign 

vector W  are sufficient to complete the system algorithm which provides network diagnostics and contains eight 

components: 

 

  AVW  , BV , CV , AI , BI , CI , 0V , iV  (6) 
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Binary character is another diagnostic condition for the application of Boolean algebra, and the character of the 

sign means the presence or absence of a value. The network status set is indicated by Y , and his components with 1y , 

2y ,.., iy ,.., ny
 
that can have two values: 1 for iy

 
and 0 for iy , where i 1, 2,.., n . In Bol's algebra, the order of 

operations is determined: 1. Conjunction (logical multiplication, Λ [∙, "and"]), 2. Disjunction (logical addition, V [+, 

"or"]), 3. Negation (logical inversion, No [ iX , "no"]) [30]. The diagnostic algorithm establishes mathematical-logical 

rules for determining a unique connection between a set of sign vectors W  the diagnostic algorithm establishes 

mathematical-logical rules for determining a unique connection between a set of sign vectors Y . The existence of 

voltage is indicated, for example, by AV , and a defect with a line above the symbol AV . In the case of branching - 

separation, the relation is uniquely determined by Boolean diagnostic function "of the sign vector ",  WFY 
 
which 

has only two values: 0 and 1, depending on whether an assessment of the condition is required or not.  

In the set of diagnostic functions, the number of components should be equal to the number of estimated network 

states. If the process of synthesis of diagnostic functions is analogous for all modes, it is sufficient to consider only the 

process for one mode, for example earth fault.  

In the case of a phase A earth fault, the voltmeter shows a voltage close to zero (depending on the position of the 

earth fault in relation to the busbars of the plant), ie. below the threshold value and therefore the sign component will be 

AV . Voltages BV
 
and CV

 
they grow, and it is important that they are higher than given. If currents flow through each 

phase, there are components in the diagnostic function at ground fault AI , BI , CI .  

In phase earthing A, 0AV , there is no voltage of inverse order iV , while zero order voltage 0V
 
exists, is close to 

and higher than the threshold voltage threshold. Therefore, the conjunction rule applies to the diagnostic function of 

phase A earth fault: 

 

 iCBACBAA VVIIIVVVY 0
 (7) 

 

By analogy, a phase B earth fault is recognized by function: 

 

 iCBACBAB VVIIIVVVY 0
 (8)  

 

while the phase C earth fault is recognized by function:  

 

 iCBACBAC VVIIIVVVY 0  (9)  

 

By connecting relations (7-9), the Boolean diagnostic function of the network mode can be obtained: 

 

   iCBACBACBACBA VVIIIVVVVVVVVVY 0033   (10) 

 

whose value is equal to 1 in the case of an earth fault of any phase (A, B or C).  

Relations (7-9) carry more data than relations (10) because they allow to recognize both the earth fault and the 

phase in which the earth fault occurred. Therefore, it is more important to determine the diagnostic function of the 

condition than the network mode.  

Table 1 shows the diagnostic functions of the state of the compensated electrical network. 

Algorithms of diagnostic functions in the electric power network are obtained with the help of diagnostic functions. 

Not all two-phase and three-phase short circuits with simultaneous phase interruption were taken into account, which is 

a lack of diagnostic conjunction functions. The character of the conjunction shape function enabled the construction of 

2 types of circuits: with diodes and with microprocessors. The value of this analysis and method is reflected in the fact 

that all functions can be performed with the same scheme with 8 inputs and 1 output, Fig. 3.a,b, where: 1 – input to the 

standard marked inverter that implements the logic function `NO`, encoder blocks: 2 – phase voltages, 3 – phase 

currents in the conductor, 4 – zero order voltages, 5 – inverse order voltages, 6 – AC voltage converters to unified DC 

signal. The inverter diode array is an easier way to get the circuit in Fig. 3.a with the specified diagnostic functions from 

the Table 1. 
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Table 1. Diagnostic functions of possible electrical network conditions 

Electrical condition 

networks 033 

Diagnostic function  

* 0V , iV  
Electrical condition 

networks 033 

Diagnostic function  

* 0V , iV  

Normal regime iCBACBA VVIIIVVVY 01   phase B and phase break A, B and C iCBACBA VVIIIVVVY 021   

phase A - earth fault iCBACBA VVIIIVVVY 02   phase C and phase break A and B iCBACBA VVIIIVVVY 022   

phase B - earth fault iCBACBA VVIIIVVVY 03   phase C and phase break B and C  iCBACBA VVIIIVVVY 023   

phase C - earth fault iCBACBA VVIIIVVVY 04   phase C and phase break A and C iCBACBA VVIIIVVVY 024   

phase A and its termination iCBACBA VVIIIVVVY 05   phase C and phase break A, B and C iCBACBA VVIIIVVVY 025   

phase B and its termination iCBACBA VVIIIVVVY 06   
Connection of phase A and B directly and/or to 
ground iCBACBA VVIIIVVVY 026   

phase C and its termination iCBACBA VVIIIVVVY 07   
Connection of phase A and C directly and/or to 

ground iCBACBA VVIIIVVVY 027   

phase A and interruption of 
phase B iCBACBA VVIIIVVVY 08   

Connection of phase B and C directly and/or to 
ground iCBACBA VVIIIVVVY 028   

phase A and interruption of 

phase C iCBACBA VVIIIVVVY 09   
Connection of phase A, B and C directly and/or 

to ground iCBACBA VVIIIVVVY 029   

phase B and interruption of 
phase A iCBACBA VVIIIVVVY 010   

Connection of phase A and B and termination 
of phase C iCBACBA VVIIIVVVY 030   

phase B and interruption of 

phase C iCBACBA VVIIIVVVY 011   
Connection of phase A and C and termination 

of phase B iCBACBA VVIIIVVVY 031   

phase C and interruption of 
phase A iCBACBA VVIIAVVVY 012   

Connection of phase B and C and termination 
of phase A iCBACBA VVIIIVVVY 032   

phase C and interruption of 

phase B iCBACBA VVIIIVVVY 013   
Connection of phase A, B, C and termination 

of phase 1 or 2 iCBACBA VVIIIVVVY 033   

phase A and interruption of 
phase B and C iCBACBA VVIIIVVVY 014   Phase interruption A iCBACBA VVIIIVVVY 034   

phase A and interruption of 

phase A and B  iCBACBA VVIIIVVVY 015   Phase interruption B iCBACBA VVIIIVVVY 035   

phase A and interruption of 
phase A and C iCBACBA VVIIIVVVY 016   Phase interruption C iCBACBA VVIIIVVVY 036   

phase and interruption of 

phase A, B and C iCBACBA VVIIIVVVY 017   Phase interruption A and B iCBACBA VVIIIVVVY 037   

phase B and interruption of 

phase A and C iCBACBA VVIIIVVVY 018   Phase interruption A and C iCBACBA VVIIIVVVY 038   

phase and interruption of 

phase A and B  iCBACBA VVIIIVVVY 019   Phase interruption B and C iCBACBA VVIIIVVVY 039   

phase B and interruption of 

phase B and C iCBACBA VVIIIVVVY 020   Phase interruption A, B and C iCBACBA VVIIIVVVY 040   

 

The scheme of the diagnostic algorithm is also realized with 3 microprocessors, Fig. 3.b, in which the binary code 

is converted to decimal according to the principle 1 of 10 and 20 microcircuits for the realization of two elements. 

Comparing schemes, it is concluded that the scheme in Fig. 3.b more reliable and less sensitive to interference, has 

smaller dimensions and required power. 

 

 

Fig. 3. a) Inverter circuit with diodes for realization of power network diagnostic algorithm, b) circuit with microprocessors 
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The threshold (lower level) of diagnostic parameters is important for the realization of algorithm AV , BV , CV , AI , 

BI , CI  and 0V , iV . The lower voltage level of inverse order must beand f
P

i V.V 20
 
if it is in a network with higher 

single-phase loads, the degree of asymmetry is less than 10-15%, because when one phase is interrupted, the level is 

much higher than 20%. 

In cable networks, the lower level of the zero-order voltage value P
V0  

should be selected at 5% of the phase

f
P

V.V  0500 , because the natural displacement of the constellation does not exceed 3%. In overhead networks (35 

kV) the natural displacement of the star point can reach 30%, therefore for P
V0  

you need to choose a higher level, i.e.

f
P

V.V  400 . 

Threshold values of important currents 
PI  is easy to choose because when their value is zero, the interruption of 

the phases is confirmed, and in the idle mode they are not equal to zero because they are caused by the no-load currents 

of the transformer. However, those currents are small, so the level 
PI  should be selected at a value of 1% of the 

nominal phase current C,B,A
P I.I 010 . 

There is a problem when choosing the voltage threshold because the voltages depend on the position of the fault 

location. Earth faults with high transient resistances can be treated as phase overloads. According to IEC [31], these 

post-fault voltages cannot be less than 20% of the rated voltage, although initially the fault voltage is not more than 70% 

of the rated voltage. In a network whose diagnostic functions are needed, it is good to adopt it as a threshold value

np V.V  750 . 

6.  Simulation Scheme and Results 

If the voltages are symmetric, for the analysis of a three-phase network, a calculation for one phase and repeating 

the procedure for the other two phases whose voltages have the same modules and are phase shifted by an angle is 

sufficient q/π2  ( q -number of phases).  

The simulation method, which relies on artificial intelligence and computer assistance through "playback", can 

replace the classic procedure of calculation and measurement and provide an objective picture of the state of the 

network. In MATLAB there is a program for simulating electrical quantities according to the algorithm of transient 

process models and a program for generating quantities [32]. Programs are used to check the generated and processed 

values and to recognize the generated and processed values after signal simulation [33]. The programs have two parts: 

front (SCOPE) and block diagrams. 

The block diagram is used for writing programs, and the front diagram for displaying user correspondence. The 

generating program has built-in "simulate signal" functions that are used to generate various signals, but it is the best 

sine wave choice. The sampling frequency and the number of simulation samples are set at the input. Variables at the 

input are: frequency, amplitudes and phase attitudes. The "simulate signal" function is located in the Dot product loop 

(3 loops, for 3 phase voltages and 3 loops for symmetrical components) and has a number of iterations equal to the first 

harmonic 50f
 
Hz which is generated, ie. represents the number of rows of each "cluster" field. The input for the Dot 

product loop is in "cluster" format. The program has 2 "cluster" of 3 fields: voltages for each phase individually and for 

voltages 0,i,dV . 

By entering the value in the "cluster", the voltage level is selected and 3 parameters are entered on the Scope 

separately for each phase. The loop in each iteration reads the values of all "cluster" fields at the field location equal to 

the current iteration. The first iteration contains data on initial values 0,i,dV . In the next iteration, the values of the 

current iteration with the initial iteration are added to the loop and the value is obtained at the desired time. After 

completing the iteration and adding up all the previous iterations, the final values are entered in the output.txt doc. 2-

pole file: in the first sampling time, and in the second voltage. 

For the verification of the model and algorithm of transient transformer processes, a special program was written in 

MATLAB for which two schemes were compiled, Fig. 4.a and 4.b, for simulation of processes with given parameters of 

phase voltage levels and display of diagrams on only two Scopes: 1. for phase voltages and 2. for symmetric voltage 

components [32]. 
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Fig. 4. Model scheme for simulation of a reference discrete three-phase analyzer using Fourier analysis of a moving window of one frequency cycle 

50 Hz 

Diagram blocks presented on Fig. 4.a and 4.b, serve to simulate the operation of a reference discrete three-phase 

analyzer using Fourier analysis of a single-cycle moving window. Certain frequencies are first used to define three 

phase voltage input signals aV , bV
 
and cV

 
with the frequency of the first harmonic, 50f  Hz. Then the phase values 

are rotated by po 120
0
 to obtain direct dV , inverse iV

 
and zero 0V

 
component. The filter block is used in the control 

system for measuring voltage and current of a given order, and the filter block introduces a delay. Filter block response 

to step change 1V
 
is only a monocyclic linear change. Discrete three-phase block analyzer produces components of 

direct, inverse and zero order in particular: Fig. 4.a or components of all three orders together, or the scheme in Fig. 4.b 

(amplitude and phase shifts) three (symmetric - balanced or unbalanced - asymmetric) sets of signals containing the 

fundamental voltage harmonic 50f  Hz [34]. The input contains a signal - vector 3 sinusoidal signals c,b,aV . Outputs 

1 and 2 respectively give the magnitude (amplitude) and phase position of the components of the appropriate order. For 

the first simulation cycle, the outputs are constant values in the specified parameters, and aV , bV
 
and cV

 
are input 

phasors of a certain frequency. 

In the adapted part of the MATLAB package psb.abc,part.mdl [32], the operation of the Sequence analyzer for 

short-circuit fault type disturbance, if the overvoltage levels are simulated on the model scheme [p.u.] [1].  

On the Scope 1 voltage phasor diagrams are given aV  (yellow), bV  (blue), cV  (pink), Fig. 5.a. Normal network 

operation and amplitude level in all three phases a, b, c is   4114112 ..u.pVV.VV mnnm   and is suitable to 

interval 05000 .t.   s, and then overvoltage with amplitude levels occur   22  .u.pVVV mnm  
in interval 

150050 .t.   s, Fig. 5.b. The voltage level is assumed in the simulation, but realistically, the voltage level is 

determined by the dynamic impedances of the circuit and the switch-off current, while the overvoltage level is 

determined by the source (generator or line) and the impedance ratio dZ/Z0  [1], [5].  

From the Scope 2, Fig. 6.a, we can conclude:  

 

 (a. Scheme, Diagram dV  positive sequence) it is clear that the direct component is not important for 

overvoltage detection because there is no discrete response in the signal dV  (pink) and dV  [p.u.] (yelow). 

 (a. Scheme, Diagram iV  negative sequence) in the inverse component the response is delayed due to the 

influence of the filter. 

 (a. Scheme, Diagram 0V  zero sequence) there is a response in the zero-order component, but with a delay due 

to the influence of the filter. 
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Fig. 5. Voltage (for steady state) and overvoltage (disturbance) diagrams: demonstration of a programmed a, b, c three-phase source in which three 
phases are analyzed separately 

 

Fig. 6. Voltage (for steady state) and overvoltage (disturbance) diagrams: demonstration of a programmed a, b, c three-phase source in which three 
phases are analyzed together 

All of the above also applies to discrete values for Fig. 6.b where dV
 
is [p.u.] response (yellow), iV  [p.u.] response 

(green), and 0V  [p.u.] is not even detected.  

Simulation results - simulation diagrams corresponding to surge values when switching off short circuits of levels 

1.5–2.0 [p.u.] show that three known methods for analysis of steady states are not correct and reliable for analysis and 

assessment of surges (disturbances of the type of disturbances - longitudinal asymmetries according to the IEC standard 

[31]). 

Further steps in future research should relate to introduction of obtained formulas in algorithms of protection 

systems and local automation systems. 
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7.  Conclusion 

Based on the previous considerations, we can conclude the following: 

 

 Diagnostic devices that basically contain controllers (or universal microprocessor relays) can be installed to 

increase the efficiency and quality of control of the state of electrical networks and reduce the time of 

restoration of normal states after disturbances in plants). 

 Synthesis of the algorithm for diagnosing the state of the electrical network was achieved using Boolean 

algebra. 

 Applying the conjunctive form of the Boolean diagnostic function, the diagnostic algorithm can be realized 

with the help of selected microprocessor components in the set according to the table shown 1. 

 Scheme in Fig. 3.b, achieved with microprocessors is better, because it takes less time for automatic 

reconnection (APU) and normal network operation - thus significantly shortening the time to establish normal 

network operation and increased reliability of power supply to consumers. 

 

The method of computer-assisted simulation through "playback" replaced classical procedure of calculating and 

measuring electrical quantities and provided an objective picture of the state of network. In MATLAB Simulink there is 

a program for simulating electrical quantities according to algorithm of transient process models and a program for 

generating quantities. Programs are used to check the generated and processed values and to recognize the size of 

generated and processed signals. 
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