
I.J. Modern Education and Computer Science, 2014, 5, 52-59
Published Online May 2014 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2014.05.07

Copyright © 2014 MECS I.J. Modern Education and Computer Science, 2014, 5, 52-59

A Metaheuristic Algorithm for Job Scheduling in

Grid Computing

Hedieh Sajedi
Mathematics, Statistics and Computer Science School, College of Science, University of Tehran, Tehran, Iran

Email: hhsajedi@ut.ac.ir

Maryam Rabiee
Department of Computer, Science and Research Branch, Islamic Azad University, Khouzestan, Iran

Abstract—These days the number of issues that we can

not do on time is increasing. In the mean time, scientists

are trying to make questions simpler and using computers.

Still, more problems that are complicated need more

complex calculations by using highly advanced

technology. Grid computing integrates distributed

resources to solve complex scientific, industrial, and

commercial problems. In order to achieve this goal, an

efficient scheduling system as a vital part of the grid is

required. In this paper, we introduce CUckoo-Genetic

Algorithm (CUGA), which inspired from cuckoo

optimization algorithm (COA) with genetic algorithm

(GA) for job scheduling in grids. CUGA can be applied

to minimize the completion time of machines, and it

could avoid trapping in a local minimum effectively. The

results illustrate that the proposed algorithm, in

comparison with GA, COA, and Particle Swarm

Optimization (PSO) is more efficient and provides higher

performance.

Index Terms—Cuckoo optimization algorithm, genetic

algorithm, job scheduling, grid computing.

I. INTRODUCTION

The popularity of the internet and the availability of

broadband networks need to use of distributed and multi-

user computers are provided. Recent researches in the

computing science introduced a new issue called "Grid

Computing" [1].

Grid computing is an approach to solving large-scale

problems in science, engineering, and business [2]. Grid

computing involves resource sharing, resource

management, information management, job scheduling,

and so on. The aim of grid computing is to use the

computing resources available for complex computing by

sites, which were distributed geographically. The main

idea of grid computing is that sharing resources between

layers of software can be used for transparency and

security. This layer of software is responsible for

virtualization resources, search resources and manage

running applications.

Computational grids, in the simplest sense are

distributed computations. The purpose is thought a simple

virtual computer while large and powerful that has the

ability to manage a wide collection of computers be

created. This collection of a group of heterogeneous

systems connected together with various combinations of

shared resources.

Scheduling is one of the most important problems in

computational systems like grid. To increase the

efficiency of the grid, a scheduler is required to work

properly and efficiently. Unfortunately, the dynamic

nature of the grid and various demands of users have

caused the complexity of grid scheduling. The dynamic

nature of the grid means that the performance of grid

resources is always changing.

Heuristic scheduling algorithms are often used in

heterogeneous computing environments [3, 4, 5]. In

dynamic grid environments, the execution time and

workload cannot be determined in advance. Therefore,

grid scheduling needs predictive models.

In this paper, CUckoo-Genetic Algorithm (CUGA) is

presented as a metaheuristic algorithm to solve job

scheduling problem in grid environment. CUGA is

inspired by cuckoo search optimization and genetic

algorithm. It has the capability of global searching, and it

has fewer algorithm parameters than genetic algorithm.

Through a serial of simulated experiments, our results

illustrate that CUGA algorithm is effective for job

scheduling in computational grids. In addition, CUGA

could avoid trapping in a local minimum effectively.

The paper is organized as follows. Related works are

reviewed in Section 2. In Section 3, job scheduling in

grid computing is described. In Section 4, we will have a

brief overview of cuckoo optimization algorithm. Genetic

algorithm will be discussed in Section 5. In Section 6,

CUGA algorithm will be introduced. Job scheduling

using CUGA will be discussed in Section 7. Experimental

results are explained in Section 8 and conclusion is

presented in Section 6.

II. RELATED WORKS

Many studies have been done in the area of job

scheduling in computational grids. Intelligent

optimization methods can be applied to resolve such

complex problems [6]. On the other hands, metaheuristic

algorithms are widely used to solve a variety of NP-hard

problems.

 A Metaheuristic Algorithm for Job Scheduling in Grid Computing 53

Copyright © 2014 MECS I.J. Modern Education and Computer Science, 2014, 5, 52-59

Aggarwal [7] proposed a scheduler based on GA for

grid environment. In this research, a Directed Acyclic

Graph (DAG) represented for each job takes into account

arbitrary precedence constraints and arbitrary processing

time. The results show that the scheduler reduces

makespan and idle time of the available computing

resources.

Zhang represented a heuristic approach in [8] based on

PSO algorithm to solving job scheduling problem in grid

environment. His experiments show that PSO algorithm

is able to do a better scheduling compared to GA.

Wang proposed Genetic-Simulated Annealing (GSA)

algorithm in [9], which combines GA with Simulated

Annealing algorithm (SA) for grid job scheduling.

Mathiyalagan and Suriya in [10] used Ant Colony

Optimization (ACO) for scheduling in grid environment.

In this research, ant colony begins with no solution. Each

ant makes own solution with decisions by limitations and

heuristics. The ants are allowed to share information

about good solutions; it is necessary to update the

pheromone sequence.

Umale in [11] used ACO hybrid with Genetic

Algorithm in Grid environment that provides a two-level

decision called TLDA. At first initial schedule is created

using ACO, then they used GA to modify the scheduler.

TLDA algorithm reduces the execution time of

applications. This algorithm is dynamically changed

during the execution of works and resources to take into

consideration. TLDA has better performance in

comparison with ACO and GA.

Pooranian in [12] proposed a new hybrid-scheduling

algorithm that combines GA and the Gravitational

Emulation Local Search (GELS) algorithm denotes GGA.

The noteworthy feature of GGA scheduler is that it

decreases runtime and the number of submitted tasks

whose deadlines are missed. A comparison of the

performance of the proposed joint optimal scheduler to

similar methods shows that it produces more optimal

computation time.

III. JOB SCHEDULING IN GRID COMPUTING

Scheduling is the process of allocating a finite set of

jobs to resources [13]. In other words, scheduling is the

process of allocating jobs in an effective and organized

combination to achieve goals. These jobs usually require

the use of resources that this resource in terms of

numbers and in terms of access time is limited [14].

However, jobs may be needed to run at a specific time

and in a specific order. The aim of scheduling is to find

an optimal resource and allocate a job to the resource. In

this process, a scheduler should overcome heterogeneous

resources and maximize overall system performance. The

concept of scheduling is shown in Fig 1. As you can see

in the figure, several jobs may be assigned to a resource.

In this case, a set of n jobs and m machines are shown.

Each job i is composed of ni operations, which we show

Oi1,Oi2,Oi3,…,Oini. The goal is to find a scheduling that

will have the least possible time to complete all the jobs.

Fig. 1. Job scheduling in grid computing

Cases, which are considered by grid scheduler, include:

 Efficiency of CPU: CPU keeps busy as much as

possible.

 Throughput: Number of jobs completed in each

unit of time.

 Return time: The running time of a particular

process.

 Response time: The time between the first

request and receiving a response

Grid scheduling process can be considered in three

steps:

1. Detect and separate resources

2. Select and schedule resources based on specified

goals

3. Assign jobs to resources

The emphasis of scheduling algorithms is on the

second step.

IV. CUCKOO OPTIMIZATION ALGORITHM

Cuckoo Optimization Algorithm is one of the

evolutionary techniques, which was introduced in 2009

by Yang and Deb [15]. This algorithm is inspired by the

lifestyle of a bird called Cuckoo. This lifestyle is one of

the rarest brood parasites in nature. This bird did not

make nest for itself and it used the nests of other birds for

laying eggs. The ability to create eggs like the bird host is

reinforced in cuckoo bird. If the bird's host discovers eggs

that are not theirs, it throws away or leaves the nest, and

it makes a nest in other places. Cuckoo eggs are the

bigger size of the host bird until cuckoo brood would

hatch soon. When the host bird's eggs are thrown out of

the nest or demand food so much to other broods, die of

hungry. When the cuckoo brood grows and becomes a

mature bird, they continue the mother's life instinctively.

In order to solve an optimization problem, it is

necessary that the values of parameters' problem be

formed as an array. In GA and PSO terminologies, this

array is called ―Chromosome‖ and ―Particle Position‖.

However, in COA it is called ―habitat‖ [16]. To start

optimization with COA algorithm, a candidate habitat

matrix is generated. Then some randomly produced

Resm

54 A Metaheuristic Algorithm for Job Scheduling in Grid Computing

Copyright © 2014 MECS I.J. Modern Education and Computer Science, 2014, 5, 52-59

number of eggs is supposed for each of these initial

cuckoo habitats. In nature, each cuckoo lays between 5 to

20 eggs. These values are used as the upper and lower

bounds of eggs assigned to each cuckoo at different

iterations. Other habit of real cuckoos is that laying eggs

within a maximum distance from their habitat. This

maximum area will be called ―Egg Laying Radius

(ELR)‖. Each cuckoo has an ELR, which is appropriate

with TE, the total number of eggs, NE, number of current

cuckoo’s eggs, and variable limits of varhi and varlow.

Accordingly, ELR is defined as (1):

ELR= (1)

where α is an integer supposed to handle the maximum

value of ELR.

When young cuckoos grow and become mature, they

live in their own area and make society for some time.

But when the season for egg laying approaches, they

move to new habitats with the most similar host eggs and

with more food for new young birds. After that cuckoo

groups are formed in different areas, the society with the

highest fitness value is selected as the goal point and

other cuckoos move to that point.

At what time mature cuckoos live in that environment

identifying which cuckoos belong to which groups is

difficult. Now for those groups of cuckoo that are

identified efficiency value is calculated. The maximum

amount of efficiency is determined by the goal group and

consequently that group’s best habitat is the new

destination habitat to move cuckoos.

While moving toward a goal point, the cuckoos do not

fly all the way to the destination habitat. They only fly a

part of the way and have a deviation. Fig. 2 shows

pseudo-code of COA.

Fig. 2. Pseudo-code of Cuckoo Optimization Algorithm

V. GENETIC ALGORITHM

Genetic algorithm was first introduced in 1970 by John

Holland [17]. In general, genetic algorithm is comprised

of the following components:

Chromosome: In genetic algorithms, each

chromosome represents a point in the search space, and a

possible solution to a considerable problem. Their

chromosomes (solutions) are composed of a number of

genes (variables). To represent chromosomes, it is usually

used binary encoding (bit strings).

Population: A population is a set of chromosomes. By

the influence of genetic operators on the population, the

new population will be formed with the same number of

chromosomes.

Fitness function: In order to solve each problem by

using of genetic algorithms, a fitness function must be

invented for that issue. For each chromosome, this

function returns a negative number that indicates

competence or ability of the individual chromosomes.

In genetic algorithms, genetically operators are used

during the reproductive stage. The impact of these

operators on a population produced the next generation.

Selection, crossover, and mutation have the most

commonly used operators in Genetic algorithms.

Selection operator: By means of this operator, a

number of chromosomes are selected for reproduction.

Elegant chromosomes are more likely to be selected for

reproduction.

Crossover operator: During the crossover, random

parts of chromosomes are exchanged with each other.

The children contain combination of qualities that their

parents have. Good qualities of parents are gathered to

produce new children.

Mutation operator: After the crossover on

chromosomes, mutation operator is granted. The function

selects a gene in a chromosome randomly and then alters

gene content.

VI. CUGA: THE PROPOSED ALGORITHM

In this section, a new optimization algorithm, CUGA,

is introduced which involves concepts of cuckoo

optimization algorithm and genetic algorithm. The

disadvantage of GA requires fairly long processing time

to calculate, and it needs to develop a test to define the

optimal parameters. PSO algorithm has been compared

with genetic algorithm and it has been shown the PSO

results shorter time to complete jobs. However, its

disadvantage is that it often can not reach the quality of

solutions to be compensated by increasing repetitions.

One of the reasons is that in PSO algorithm particles

converge to a value among a certain point in general and

personal positions. Another disadvantage is the rapid rate

of transfer data between particles that increases the

probability of being in a local optimal.

The advantages of cuckoo optimization algorithm

compared with other optimization methods are:

1. Faster convergence.

2. Higher accuracy.

1. Initialize cuckoo habitats with random points.

2. Define ELR for each cuckoo.

3. Let cuckoo lay eggs inside their corresponding

ELR.

4. Kill those eggs that are identified by host

birds.

5. Eggs hatch and chicks grow.

6. Evaluate the habitat of each newly grown

cuckoo.

7. Limit cuckoos’ maximum number in

environment and kill those that live in worst

habitats.

8. Cuckoos find best group and select goal

habitat.

9. Let new cuckoo population move toward goal

habitat.

10. If stop condition is satisfied end, if not go to 2.

 A Metaheuristic Algorithm for Job Scheduling in Grid Computing 55

Copyright © 2014 MECS I.J. Modern Education and Computer Science, 2014, 5, 52-59

3. Search with variable population (because of the

destruction population in unsuitable regions).

4. Move total population toward better solutions

with destroyed unsuitable solutions.

5. The ability optimization of problems with high-

dimensional.

6. Having the ability to avoid becoming trapped in

a local minimum.

The efficiency of genetic algorithms is highly

dependent on how the chromosomes are represented, so

finding a optimal sequence of chromosomes is a hard

problem. Our proposed algorithm is combine cuckoo

search algorithm with GA to address this weakness. A

combination of a GA and COA is used because COA

searches the problem space well and finds better solutions

compared to other local search algorithms such as PSO

and GA. GA searches inherently parallel and it can search

several aspects of a problem space simultaneously.

Furthermore, the convergence of GA is slow for global

optimization and has been proven unstable in different

implementations. The efficiency of GA can be improved

by benefiting from algorithms such as COA.

CUGA is composed of two stages: the first stage

complies with cuckoo optimization algorithm and the

second stage pursues genetic algorithm. In CUGA

algorithm at the end of the first stage, a population of

cuckoo eggs in an area that has the greatest chance for

growth is feed to the second stage as the initial population.

In second stage of CUGA, single point crossover is

utilized. Afterward, mutation operator will affect the new

population. Using this operator, a cuckoo is selected

randomly from the population and it is replaced by

another one from the population. After the mutation

operation, the cuckoo population produced is known as

the new generation in which the optimal solution is stored

and then the steps have been repeated again. Fig. 3 shows

the pseudo-code of CUGA algorithm.

Begin

Generate initialize cuckoo habitats.

Dedicate some eggs to each cuckoo.

Define ELR for each cuckoo.

 While (iteration < maxIter) and not (stop Criterion)

 Initialize number of eggs for each cuckoo.

 Kill those eggs that are recognized by host birds.

 Keep the best solutions (or nests with quality

solutions).

 Using best cuckoo on last Crossover Rate% of cuckoo

population.

 Mutation of all population.

 End While

Postprocess the results and visualization.

end

Fig. 3. Pseudo-code of CUGA algorithm

VII. JOB SCHEDULING IN GRID COMPUTING USING CUGA

We used CUGA for job scheduling in grid computing.

The aim of CUGA for scheduling is present at optimal

method to allocate jobs to machines to decrease

completion time, resource efficiency, and increasing

speed of convergence. CUGA is utilized in problems with

complex assumption.

In this paper, each job is composed of n operations,

which will run on m machine. When a job log in may or

may not need all machines or a special machine is needed

more than once, the scheduler is faced with many

problems so for this issue, assumptions, and rules are

considered:

1. There is no constraint on processing time of

each job on machine.

2. There is no run out time. Each job should be

processed to its finishing point [18].

3. All jobs enter the system at zero time and can

start execution immediately. It means that there

is no constraint on assignment time.

4. All jobs that entered the system must use all of

the machines. In other words, if there are n jobs

and m machines, each job must consist of m

operations that each of them will be executed

exactly on one of machines.

5. The order of operations of each job on machines

can be changed from one job to others. For

example, in the environment with 3 machines

job i may be processed on machine 1, 3, 2 and

job j may be processed on machine 2, 1, 3

respectively.

6. Main objective is to minimize the make span.

Explicitly, jobs must be organized on machines

in order to minimize the overall execution time

of jobs.

7. One machine can process at most one operation

at a time.

8. Every job can be performed just on one machine

at a time [18].

9. Operations can not be interrupted, which means

operation execution is atomic.

10. There is not any crashed machine, which means

all the machines are always available.

11. Machines may be idle during overall execution

process.

12. The only limitation in this problem is that of the

priority order of the operations of each job. A

job has to follow the order of operations

assigned to it and can not contravene even one

constraint [19].

Fig. 4 shows the diagram of using CUGA algorithm to

solve job-scheduling problem. The cuckoo’s egg

corresponds to a solution of the problem. The

implementation steps are described in the following.

56 A Metaheuristic Algorithm for Job Scheduling in Grid Computing

Copyright © 2014 MECS I.J. Modern Education and Computer Science, 2014, 5, 52-59

Fig. 4. Outlines of using CUGA, the proposed algorithm, for solving job

scheduling

Generate the initial population: Generating initial

population is base of beginning algorithm. Population of

cuckoos mapped into a set of jobs. Each cell of habitat

has mapped to resources that are located in operation of

each job. The items received at this stage, including n is

the number of jobs, o the number of operations (because

each job consist of several operations), m is number of

machines, Vn*m is the order of operations for each job and

also the time required for each operation, the algorithm

tries to find the optimal solution. We assume that the

number of machines with the number of operations is

equal: m=o.

Select an optimal order of machines: The order of

run-time operations on each machine is different. For

example, in an environment with four jobs and three

machines one job may employ machines 1, 3, 2 and the

other one used machines 1, 2, 3 to be finished. In this step

we are looking for an optimal sequence of machines. So

for each job a[i]m*m (m is the number of machines and the

number of operations) minimum run time should be

resulted. However, the performance of a machine to do a

job alone is not determinative, but all machines have less

time to perform a job with the assumption that a machine

should not be used more than once.

Fitness function calculation: To ensure this

assumption that each operation at any time can only run

on a machine it means that existing a one to one

relationship between a machine and operations of a job,

we have used a fitness function that satisfied the

condition. The fitness function is obtained from (2). To

assure this assumption, we should define a penalty

coefficient that applies to fitness function (FF1). Fitness

function is defined by (2):

 (2)

where j is the number of jobs, FL is penalty coefficient

and ET is the execution time of jobs. If two machines

implement an operation of jobs simultaneously, penalty

coefficient caused increasing FF1 and the solution will be

disregarded by COA.

Assign machines to operations based on the input

sequence: After calculating the execution time of jobs

and finding an optimal sequence of jobs on machines,

turn is the allocation machines based on the input

sequence. A sequence of jobs that the user will require

determines which job to which machine should be

delivered. We use operation-based presentation to

allocate operation to machines [20]. Since each job

exactly run on each machine once, in this way, the

number of jobs exactly appears to the number of machine.

For example, Fig. 5 shows a sequence of jobs.

Consider the problem with 4 jobs and 3 resources. Table

1 shows order of allocation of jobs to machines, and

require time for executing on each machine.

Each number in this sequence shows the number of

jobs. Since each job consists of 3 operations, each job

exactly appears 3 times in each sequence. The first

number is observed; number 1 that is the first appearance

in this sequence indicates the first operation of job 1 and

by referring in Table 1 executed in machine 1. Next

number is 1 that is the Second appearance in this

sequence so, it's indicate to second operation of job 1, by

referring in Table 1 selected machine 2. Similarly, the

sequence continues until the final sequence gets the

machine of each operation. For this example, in the end

Fig. 6 shows the sequence of machines. In addition, Fig.7

shows the allocation of jobs to 3 resources.

1 1 2 4 3 1 4 2 3 2 4 3

Fig. 5. A sequence of jobs

1 2 3 1 2 3 3 2 3 1 2 1

Fig 6. A sequence of resources

 A Metaheuristic Algorithm for Job Scheduling in Grid Computing 57

Copyright © 2014 MECS I.J. Modern Education and Computer Science, 2014, 5, 52-59

Table I. Allocate jobs to resource with execution time

Job Machine and

time of

operation 1

(machine/time)

Machine and

time of

operation 2

(machine/time)

Machine and

time of

operation 3

(machine/time)

1 1/2 2/3 3/4

2 3/4 2/4 1/1

3 2/2 3/2 1/3

4 1/3 3/3 2/1

Table II: Parameter settings of PSO and GA algorithms

Algorithm Parameter description
Parameter

Value

PSO

Self-recognition

coefficient c1
2

Social coefficient c2 2

Weight w
0.9 0.4

Max Velocity
0.01

GA

Probability of crossover 0.5

Probability of mutation 0.2

Fig. 7. Allocation of jobs to resource

Calculate idle time of machines: Since the machines

may be idle during run time, idle time calculating

machines is important. The aim is minimizing the

maximum execution time of machines. To ensure the

assumption that two machines not be allocate to an

operation at the same time, we define a fitness function to

prevent the occurrence of this event. Fitness function is

computed by the (3):

 (3)

Terminating Conditions: The algorithm terminates

when an optimal solution gains or the maximum number

of algorithm iterations has been reached.

VIII. EXPERIMENTAL RESULTS

The CUGA algorithm was implemented using Matlab

software running under the Win XP operating system on

a 1.66GHZ CPU with 2GB RAM. In our proposed

algorithm, we assumed that the crossover rate is 0.5 and

the mutation rate is 0.2.

Our proposed algorithm, solve the scheduling problem

for several different states and the parameters of

frequency have been studied. The average number of

iterations for the algorithm to achieve the optimal

solution and the average time spent in the system are

presented in tables and figures. Because of the fact that

our proposed algorithm depends on the input parameters,

to change the input values and the output of scheduling

algorithm will be change.

We have considered a finite number of small-scale

processors in the grid environment. Each experiment has

been repeated 10 times and the completion time values of

best solutions in optimization iterations have been

recorded. Afterward the minimum time of all the jobs has

been calculated. Penalty coefficient in (2) and (3) is

considered 1e2. If we ignore penalty coefficient, it will

cause increasing in FF1 and FF2 and its condition is not

considered by COA. CUGA has been compared with

PSO [8] and GA [21] algorithms based on the execution

time. The parameter settings of PSO and GA algorithms

are presented in Table 2 and the results are shown in

Table 3 and Fig. 8. We can observe in Table 3, by

increasing the number of jobs, CUGA algorithm has less

execution time than the other algorithms. Table 3 shows

the average execution time of algorithms CUGA, GA and

PSO for various iterations. For example, when maximum

iterations is 50, the average running time of the CUGA

algorithm in the grid environment with 4 jobs and 3

resources are equal to 14.6 seconds, at the same situation,

for GA algorithm this time is 19.3 seconds and applying

PSO the spent time is 18.2 seconds. The results show that

our proposed algorithm does significant improvement in

grid scheduling environment compared to other

algorithms.

IX. CONCLUSION AND FUTURE WORKS

In this paper, we proposed algorithm to solve job

scheduling problem in grid computing. This algorithm

profits the advantages of cuckoo optimization algorithm

and genetic algorithm. To satisfy the user requirements,

CUGA selects the best resource and compute the

minimum time for jobs execution on machines. In this

paper, in order to show the efficiency of the proposed

algorithm in terms of execution time, a comparison were

performed employing CUGA algorithm and some other

algorithms such as GA and PSO. Comparative results

show that CUGA can considerably reduce time-

consuming required to achieve an optimal solution.

58 A Metaheuristic Algorithm for Job Scheduling in Grid Computing

Copyright © 2014 MECS I.J. Modern Education and Computer Science, 2014, 5, 52-59

Table III: Comparison of the execution time (sec) between CUGA, GA and PSO algorithms

Table IV: Average running time (sec) of algorithms for different number of iterations

Fig. 8. Comparison of CUGA with GA and PSO, by increasing the number of jobs, the difference of spending times is obvious.

ACKNOWLEDGMENT

The authors gratefully acknowledge use of the services

and facilities of University of Tehran. This work was

supported in part by a grant from University of Tehran

(No. 390835/1/01).

REFERENCES

[1] I. Foster, C. Kesselman, ―The Grid: Blueprint for a Future

Computing Infrastructure‖, Morgan Kaufman Publishers,

USA, 1999.

[2] I. Foster, C. Kesselman, ―The Grid 2: Blueprint for a New

Computing Infrastructure‖, 2nd ed., Morgan Kaufmann,

2004.

[3] A. Abraham, R. Buyya, B. Nath, ―Nature’s heuristics for

scheduling jobs on computational grids‖, The 8th IEEE

International Conference on Advanced Computing and

Communications (ADCOM), 2000.

[4] A. Abraham, F. Xhafa, ―Meta-heuristics for Grid

Scheduling Problems‖, Springer-Verlag Berlin Heidelberg,

pp. 1–37, 2008.

[5] M. Yaghini, R. Akhavan, ―DIMMA: A Design and

Implementation Methodology for Metaheuristic

Algorithms‖, International Journal of Applied

Metaheuristic Computing, vol.1, pp.57-74, 2010.

[6] J. Schopf, ―Ten actions when grid scheduling‖,

Mathematics and Computer Science Division, 2004.

[7] M. Aggarwal and R. Kent, ―Genetic Algorithm Based

Scheduler for Computational Grids‖, Proceedings of the

19th International Symposium on High Performance

Computing Systems and Applications (HPCS’05), 2005.

[8] L. Zhang, H. Chen, R. Sun, S. Jing, B. Yang, ―A Task

Scheduling Algorithm Based on PSO for Grid Computing‖,

International Journal of Computational Intelligence

PSO algorithm GA algorithm CUGA algorithm
Number of machines Max

Iterations

Number of jobs

14 15 14

3 50

4

22 23 19 5

23 25 20 6

39 45 32 10

50 55 45 15

 Average execution

time(sec)

 Max

Iterations

PSO GA CUGA

50 18.2 19.3 14.6

100 19.6 20.6 15.4

150 17.4 19.3 14.8

200 20.1 23.4 14.4

250 18.9 20.1 15

 A Metaheuristic Algorithm for Job Scheduling in Grid Computing 59

Copyright © 2014 MECS I.J. Modern Education and Computer Science, 2014, 5, 52-59

Research, vol. 4, no. 1, pp. 37–43, 2008.

[9] J. Wang, Q. Duan, ―A New Algorithm for Grid

Independent Task Schedule: Genetic Simulated Annealing",

World Automation Congress (WAC), 2010.

[10] P. Mathiyalagan, S. Suriya, N. Sivanandam, ―Modified Ant

Colony Algorithm for Grid Scheduling‖, (IJCSE)

International Journal on Computer Science and

Engineering, vol. 02, no. 02, pp. 132-139, 2010.

[11] J. Umale, S. Mahajan, ―Optimized Grid Scheduling Using

Two Level Decision Algorithm (TLDA)‖. 1st International

Conference on Parallel, Distributed and Grid Computing

(PDGC), 2010.

[12] Z. Pooranian, M. Shojafar, ―A Hybrid Meta-Heuristic

Algorithm for Job Scheduling on Computational Grids‖,

Informatica 37, 2013.

[13] R. Sharma, V. K. Soni, M. K. Mishra, P. Bhuyan, ―A

survey of job scheduling and resource management in grid

computing‖, World Academy of Science, Engineering and

Technology, no. 64, 2010.

[14] R. Rosemarry, P. Singhal, R. Singh, ―A Study of Various

Job & Resource Scheduling Algorithms in Grid

Computing‖, International Journal of Computer Science

and Information Technologies(IJCSIT), vol. 3, pp. 5504-

5507, 2012.

[15] X. Deb. Yang, ―Cuckoo Search via Levy Flights‖, World

Congress on Nature & Biologically Inspired Computing,

pp. 210-214, 2009.

[16] R. Rajabioun, ―Cuckoo Optimization Algorithm‖, Applied

Soft Computing, pp. 5508–5518, 2011.

[17] J. Holland, ―Adaptation in Natural and Artificial Systems‖,

University of Michigan Press, re-issued by MIT Press,

1992.

[18] J.P. Watson, ―Empirical Modeling and Analysis of Local

Search Algorithm for the Job-Shop Scheduling Problem‖,

Chapter2, Ph.D. Dissertation, 2003.

[19] Zh. Yaqin, L. Beizhi, Y. Jianguo, W. Qingxia, ―Study on

Modeling of Job Shop Scheduling with Multiresource

Constraints‖, International Conference on Artificial

Intelligence and Computational Intelligence, pp. 313-317,

2010.

[20] K.S. Amirthagadeswaran, V.P. Arunachalam, ―Improved

solutions for job shop scheduling problems through genetic

algorithm with a different method of schedule deduction‖,

International Journal on Advanced Manufacture

Technology, pp. 532–540, 2006.

[21] L. Sun, X. Cheng, Y. Liang, ―Solving Job Shop Scheduling

Problem Using Genetic Algorithm with Penalty Function",

International Journal of Intelligent Information Processing,

vol. 1, no. 1, pp. 65-77, 2010.

Authors’ Profiles

Hedieh Sajedi received a B.Sc. degree in

Computer Engineering from AmirKabir

University of Technology in 2003, and

M.Sc. and Ph.D degrees in Computer

Engineering (Artificial Intelligence) from

Sharif University of Technology, Tehran,

Iran in 2006 and 2010, respectively. She

is currently an Assistant Professor at the

Department of Computer Science,

University of Tehran, Iran. Her research interests include

Pattern Recognition, Machine Learning, and Signal Processing.

Maryam Rabiee received a M.Sc. in

Computer Engineering from Azad

university branch of Search and Science,

Khuzestan, Iran. Her research interests

include Grid Computing, Cloud

Computing, and Metaheuristic

approaches. Currently she is a lecturer in

Azad university branch of Ahwaz.

How to cite this paper: Hedieh Sajedi, Maryam Rabiee,"A Metaheuristic Algorithm for Job Scheduling in Grid

Computing", IJMECS, vol.6, no.5, pp.52-59, 2014.DOI: 10.5815/ijmecs.2014.05.07

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5626921

