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Abstract—These days the number of issues that we can 

not do on time is increasing. In the mean time, scientists 

are trying to make questions simpler and using computers. 

Still, more problems that are complicated need more 

complex calculations by using highly advanced 

technology. Grid computing integrates distributed 

resources to solve complex scientific, industrial, and 

commercial problems. In order to achieve this goal, an 

efficient scheduling system as a vital part of the grid is 

required. In this paper, we introduce CUckoo-Genetic 

Algorithm (CUGA), which inspired from cuckoo 

optimization algorithm (COA) with genetic algorithm 

(GA) for job scheduling in grids. CUGA can be applied 

to minimize the completion time of machines, and it 

could avoid trapping in a local minimum effectively. The 

results illustrate that the proposed algorithm, in 

comparison with GA, COA, and Particle Swarm 

Optimization (PSO) is more efficient and provides higher 

performance. 

 

Index Terms—Cuckoo optimization algorithm, genetic 

algorithm, job scheduling, grid computing.  

 

I. INTRODUCTION 

The popularity of the internet and the availability of 

broadband networks need to use of distributed and multi-

user computers are provided. Recent researches in the 

computing science introduced a new issue called "Grid 

Computing" [1].  

Grid computing is an approach to solving large-scale 

problems in science, engineering, and business [2]. Grid 

computing involves resource sharing, resource 

management, information management, job scheduling, 

and so on. The aim of grid computing is to use the 

computing resources available for complex computing by 

sites, which were distributed geographically. The main 

idea of grid computing is that sharing resources between 

layers of software can be used for transparency and 

security. This layer of software is responsible for 

virtualization resources, search resources and manage 

running applications. 

Computational grids, in the simplest sense are 

distributed computations. The purpose is thought a simple 

virtual computer while large and powerful that has the 

ability to manage a wide collection of computers be 

created. This collection of a group of heterogeneous 

systems connected together with various combinations of 

shared resources. 

Scheduling is one of the most important problems in 

computational systems like grid. To increase the 

efficiency of the grid, a scheduler is required to work 

properly and efficiently. Unfortunately, the dynamic 

nature of the grid and various demands of users have 

caused the complexity of grid scheduling. The dynamic 

nature of the grid means that the performance of grid 

resources is always changing. 

Heuristic scheduling algorithms are often used in 

heterogeneous computing environments [3, 4, 5]. In 

dynamic grid environments, the execution time and 

workload cannot be determined in advance. Therefore, 

grid scheduling needs predictive models. 

In this paper, CUckoo-Genetic Algorithm (CUGA) is 

presented as a metaheuristic algorithm to solve job 

scheduling problem in grid environment. CUGA is 

inspired by cuckoo search optimization and genetic 

algorithm. It has the capability of global searching, and it 

has fewer algorithm parameters than genetic algorithm. 

Through a serial of simulated experiments, our results 

illustrate that CUGA algorithm is effective for job 

scheduling in computational grids. In addition, CUGA 

could avoid trapping in a local minimum effectively. 

The paper is organized as follows. Related works are 

reviewed in Section 2. In Section 3, job scheduling in 

grid computing is described. In Section 4, we will have a 

brief overview of cuckoo optimization algorithm. Genetic 

algorithm will be discussed in Section 5. In Section 6, 

CUGA algorithm will be introduced. Job scheduling 

using CUGA will be discussed in Section 7. Experimental 

results are explained in Section 8 and conclusion is 

presented in Section 6. 

 

II. RELATED WORKS 

Many studies have been done in the area of job 

scheduling in computational grids. Intelligent 

optimization methods can be applied to resolve such 

complex problems [6]. On the other hands, metaheuristic 

algorithms are widely used to solve a variety of NP-hard 

problems. 
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Aggarwal [7] proposed a scheduler based on GA for 

grid environment. In this research, a Directed Acyclic 

Graph (DAG) represented for each job takes into account 

arbitrary precedence constraints and arbitrary processing 

time. The results show that the scheduler reduces 

makespan and idle time of the available computing 

resources.  

Zhang represented a heuristic approach in [8] based on 

PSO algorithm to solving job scheduling problem in grid 

environment. His experiments show that PSO algorithm 

is able to do a better scheduling compared to GA.  

Wang proposed Genetic-Simulated Annealing (GSA) 

algorithm in [9], which combines GA with Simulated 

Annealing algorithm (SA) for grid job scheduling. 

Mathiyalagan and Suriya in [10] used Ant Colony 

Optimization (ACO) for scheduling in grid environment. 

In this research, ant colony begins with no solution. Each 

ant makes own solution with decisions by limitations and 

heuristics. The ants are allowed to share information 

about good solutions; it is necessary to update the 

pheromone sequence.  

Umale in [11] used ACO hybrid with Genetic 

Algorithm in Grid environment that provides a two-level 

decision called TLDA. At first initial schedule is created 

using ACO, then they used GA to modify the scheduler. 

TLDA algorithm reduces the execution time of 

applications. This algorithm is dynamically changed 

during the execution of works and resources to take into 

consideration. TLDA has better performance in 

comparison with ACO and GA. 

Pooranian in [12] proposed a new hybrid-scheduling 

algorithm that combines GA and the Gravitational 

Emulation Local Search (GELS) algorithm denotes GGA. 

The noteworthy feature of GGA scheduler is that it 

decreases runtime and the number of submitted tasks 

whose deadlines are missed. A comparison of the 

performance of the proposed joint optimal scheduler to 

similar methods shows that it produces more optimal 

computation time. 

 

III. JOB SCHEDULING IN GRID COMPUTING 

Scheduling is the process of allocating a finite set of 

jobs to resources [13]. In other words, scheduling is the 

process of allocating jobs in an effective and organized 

combination to achieve goals. These jobs usually require 

the use of resources that this resource in terms of 

numbers and in terms of access time is limited [14]. 

However, jobs may be needed to run at a specific time 

and in a specific order. The aim of scheduling is to find 

an optimal resource and allocate a job to the resource. In 

this process, a scheduler should overcome heterogeneous 

resources and maximize overall system performance. The 

concept of scheduling is shown in Fig 1. As you can see 

in the figure, several jobs may be assigned to a resource. 

In this case, a set of n jobs and m machines are shown. 

Each job i is composed of ni operations, which we show 

Oi1,Oi2,Oi3,…,Oini. The goal is to find a scheduling that 

will have the least possible time to complete all the jobs. 

 

Fig. 1. Job scheduling in grid computing 

Cases, which are considered by grid scheduler, include: 

 

 Efficiency of CPU: CPU keeps busy as much as 

possible. 

 Throughput: Number of jobs completed in each 

unit of time. 

 Return time: The running time of a particular 

process. 

 Response time: The time between the first 

request and receiving a response 

 

Grid scheduling process can be considered in three 

steps: 

 

1. Detect and separate resources 

2. Select and schedule resources based on specified 

goals 

3. Assign jobs to resources 

 

The emphasis of scheduling algorithms is on the 

second step. 

 

IV. CUCKOO OPTIMIZATION ALGORITHM 

Cuckoo Optimization Algorithm is one of the 

evolutionary techniques, which was introduced in 2009 

by Yang and Deb [15]. This algorithm is inspired by the 

lifestyle of a bird called Cuckoo. This lifestyle is one of 

the rarest brood parasites in nature. This bird did not 

make nest for itself and it used the nests of other birds for 

laying eggs. The ability to create eggs like the bird host is 

reinforced in cuckoo bird. If the bird's host discovers eggs 

that are not theirs, it throws away or leaves the nest, and 

it makes a nest in other places. Cuckoo eggs are the 

bigger size of the host bird until cuckoo brood would 

hatch soon. When the host bird's eggs are thrown out of 

the nest or demand food so much to other broods, die of 

hungry. When the cuckoo brood grows and becomes a 

mature bird, they continue the mother's life instinctively. 

In order to solve an optimization problem, it is 

necessary that the values of parameters' problem be 

formed as an array. In GA and PSO terminologies, this 

array is called ―Chromosome‖ and ―Particle Position‖. 

However, in COA it is called ―habitat‖ [16]. To start 

optimization with COA algorithm, a candidate habitat  

matrix is generated. Then some randomly produced 

Resm 

 



54 A Metaheuristic Algorithm for Job Scheduling in Grid Computing  

Copyright © 2014 MECS                                                    I.J. Modern Education and Computer Science, 2014, 5, 52-59 

number of eggs is supposed for each of these initial 

cuckoo habitats. In nature, each cuckoo lays between 5 to 

20 eggs. These values are used as the upper and lower 

bounds of eggs assigned to each cuckoo at different 

iterations. Other habit of real cuckoos is that laying eggs 

within a maximum distance from their habitat. This 

maximum area will be called ―Egg Laying Radius 

(ELR)‖. Each cuckoo has an ELR, which is appropriate 

with TE, the total number of eggs, NE, number of current 

cuckoo’s eggs, and variable limits of varhi and varlow. 

Accordingly, ELR is defined as (1): 

 

ELR=                 (1) 

 
where α is an integer supposed to handle the maximum 

value of ELR. 

When young cuckoos grow and become mature, they 

live in their own area and make society for some time. 

But when the season for egg laying approaches, they 

move to new habitats with the most similar host eggs and 

with more food for new young birds. After that cuckoo 

groups are formed in different areas, the society with the 

highest fitness value is selected as the goal point and 

other cuckoos move to that point. 

At what time mature cuckoos live in that environment 

identifying which cuckoos belong to which groups is 

difficult. Now for those groups of cuckoo that are 

identified efficiency value is calculated. The maximum 

amount of efficiency is determined by the goal group and 

consequently that group’s best habitat is the new 

destination habitat to move cuckoos. 

While moving toward a goal point, the cuckoos do not 

fly all the way to the destination habitat. They only fly a 

part of the way and have a deviation. Fig. 2 shows 

pseudo-code of COA. 

 

 
Fig. 2. Pseudo-code of Cuckoo Optimization Algorithm 

 

V. GENETIC ALGORITHM 

Genetic algorithm was first introduced in 1970 by John 

Holland [17]. In general, genetic algorithm is comprised 

of the following components: 

 

Chromosome: In genetic algorithms, each 

chromosome represents a point in the search space, and a 

possible solution to a considerable problem. Their 

chromosomes (solutions) are composed of a number of 

genes (variables). To represent chromosomes, it is usually 

used binary encoding (bit strings). 

Population: A population is a set of chromosomes. By 

the influence of genetic operators on the population, the 

new population will be formed with the same number of 

chromosomes. 

Fitness function: In order to solve each problem by 

using of genetic algorithms, a fitness function must be 

invented for that issue. For each chromosome, this 

function returns a negative number that indicates 

competence or ability of the individual chromosomes. 

In genetic algorithms, genetically operators are used 

during the reproductive stage. The impact of these 

operators on a population produced the next generation. 

Selection, crossover, and mutation have the most 

commonly used operators in Genetic algorithms.  

Selection operator: By means of this operator, a 

number of chromosomes are selected for reproduction. 

Elegant chromosomes are more likely to be selected for 

reproduction. 

Crossover operator: During the crossover, random 

parts of chromosomes are exchanged with each other. 

The children contain combination of qualities that their 

parents have. Good qualities of parents are gathered to 

produce new children. 

Mutation operator: After the crossover on 

chromosomes, mutation operator is granted. The function 

selects a gene in a chromosome randomly and then alters 

gene content. 

 

VI. CUGA: THE PROPOSED ALGORITHM 

In this section, a new optimization algorithm, CUGA, 

is introduced which involves concepts of cuckoo 

optimization algorithm and genetic algorithm. The 

disadvantage of GA requires fairly long processing time 

to calculate, and it needs to develop a test to define the 

optimal parameters. PSO algorithm has been compared 

with genetic algorithm and it has been shown the PSO 

results shorter time to complete jobs. However, its 

disadvantage is that it often can not reach the quality of 

solutions to be compensated by increasing repetitions. 

One of the reasons is that in PSO algorithm particles 

converge to a value among a certain point in general and 

personal positions. Another disadvantage is the rapid rate 

of transfer data between particles that increases the 

probability of being in a local optimal.  

The advantages of cuckoo optimization algorithm 

compared with other optimization methods are: 

 

1. Faster convergence. 

2. Higher accuracy. 

1. Initialize cuckoo habitats with random points. 

2. Define ELR for each cuckoo. 

3. Let cuckoo lay eggs inside their corresponding 

ELR. 

4. Kill those eggs that are identified by host 

birds. 

5. Eggs hatch and chicks grow. 

6. Evaluate the habitat of each newly grown 

cuckoo. 

7. Limit cuckoos’ maximum number in 

environment and kill those that live in worst 

habitats. 

8. Cuckoos find best group and select goal 

habitat. 

9. Let new cuckoo population move toward goal 

habitat. 

10. If stop condition is satisfied end, if not go to 2. 
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3. Search with variable population (because of the 

destruction population in unsuitable regions). 

4. Move total population toward better solutions 

with destroyed unsuitable solutions. 

5. The ability optimization of problems with high-

dimensional. 

6. Having the ability to avoid becoming trapped in 

a local minimum. 

 
The efficiency of genetic algorithms is highly 

dependent on how the chromosomes are represented, so 

finding a optimal sequence of chromosomes is a hard 

problem. Our proposed algorithm is combine cuckoo 

search algorithm with GA to address this weakness. A 

combination of a GA and COA is used because COA 

searches the problem space well and finds better solutions 

compared to other local search algorithms such as PSO 

and GA. GA searches inherently parallel and it can search 

several aspects of a problem space simultaneously. 

Furthermore, the convergence of GA is slow for global 

optimization and has been proven unstable in different 

implementations. The efficiency of GA can be improved 

by benefiting from algorithms such as COA.   

CUGA is composed of two stages: the first stage 

complies with cuckoo optimization algorithm and the 

second stage pursues genetic algorithm. In CUGA 

algorithm at the end of the first stage, a population of 

cuckoo eggs in an area that has the greatest chance for 

growth is feed to the second stage as the initial population.  

In second stage of CUGA, single point crossover is 

utilized. Afterward, mutation operator will affect the new 

population. Using this operator, a cuckoo is selected 

randomly from the population and it is replaced by 

another one from the population. After the mutation 

operation, the cuckoo population produced is known as 

the new generation in which the optimal solution is stored 

and then the steps have been repeated again. Fig. 3 shows 

the pseudo-code of CUGA algorithm. 

 

Begin 

Generate initialize cuckoo habitats. 

Dedicate some eggs to each cuckoo. 

Define ELR for each cuckoo. 

 

   While (iteration < maxIter) and not (stop Criterion) 

       Initialize number of eggs for each cuckoo. 

       Kill those eggs that are recognized by host birds. 

       Keep the best solutions (or nests with quality 

solutions). 

   Using best cuckoo on last Crossover Rate% of cuckoo 

population. 

   Mutation of all population. 

   End While 

 

Postprocess the results and visualization. 

end 

Fig. 3. Pseudo-code of CUGA algorithm 

 

VII. JOB SCHEDULING IN GRID COMPUTING USING CUGA 

We used CUGA for job scheduling in grid computing. 

The aim of CUGA for scheduling is present at optimal 

method to allocate jobs to machines to decrease 

completion time, resource efficiency, and increasing 

speed of convergence. CUGA is utilized in problems with 

complex assumption.  

In this paper, each job is composed of n operations, 

which will run on m machine. When a job log in may or 

may not need all machines or a special machine is needed 

more than once, the scheduler is faced with many 

problems so for this issue, assumptions, and rules are 

considered: 

 

1. There is no constraint on processing time of 

each job on machine. 

2. There is no run out time. Each job should be 

processed to its finishing point [18]. 

3. All jobs enter the system at zero time and can 

start execution immediately. It means that there 

is no constraint on assignment time. 

4. All jobs that entered the system must use all of 

the machines. In other words, if there are n jobs 

and m machines, each job must consist of m 

operations that each of them will be executed 

exactly on one of machines. 

5. The order of operations of each job on machines 

can be changed from one job to others. For 

example, in the environment with 3 machines 

job i may be processed on machine 1, 3, 2 and 

job j may be processed on machine 2, 1, 3 

respectively. 

6. Main objective is to minimize the make span. 

Explicitly, jobs must be organized on machines 

in order to minimize the overall execution time 

of jobs. 

7. One machine can process at most one operation 

at a time. 

8. Every job can be performed just on one machine 

at a time [18]. 

9. Operations can not be interrupted, which means 

operation execution is atomic. 

10. There is not any crashed machine, which means 

all the machines are always available. 

11. Machines may be idle during overall execution 

process. 

12. The only limitation in this problem is that of the 

priority order of the operations of each job. A 

job has to follow the order of operations 

assigned to it and can not contravene even one 

constraint [19].  

 

Fig. 4 shows the diagram of using CUGA algorithm to 

solve job-scheduling problem. The cuckoo’s egg 

corresponds to a solution of the problem. The 

implementation steps are described in the following. 
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Fig. 4. Outlines of using CUGA, the proposed algorithm, for solving job 

scheduling 

Generate the initial population: Generating initial 

population is base of beginning algorithm. Population of 

cuckoos mapped into a set of jobs. Each cell of habitat 

has mapped to resources that are located in operation of 

each job. The items received at this stage, including n is 

the number of jobs, o the number of operations (because 

each job consist of several operations), m is number of 

machines, Vn*m is the order of operations for each job and 

also the time required for each operation, the algorithm 

tries to find the optimal solution. We assume that the 

number of machines with the number of operations is 

equal: m=o.  

Select an optimal order of machines: The order of 

run-time operations on each machine is different. For 

example, in an environment with four jobs and three 

machines one job may employ machines 1, 3, 2 and the 

other one used machines 1, 2, 3 to be finished. In this step 

we are looking for an optimal sequence of machines. So 

for each job a[i]m*m (m is the number of machines and the 

number of operations) minimum run time should be 

resulted. However, the performance of a machine to do a 

job alone is not determinative, but all machines have less 

time to perform a job with the assumption that a machine 

should not be used more than once. 

Fitness function calculation: To ensure this 

assumption that each operation at any time can only run 

on a machine it means that existing a one to one 

relationship between a machine and operations of a job, 

we have used a fitness function that satisfied the 

condition. The fitness function is obtained from (2). To 

assure this assumption, we should define a penalty 

coefficient that applies to fitness function (FF1). Fitness 

function is defined by (2): 

 

                   (2) 

 

where j is the number of jobs, FL is penalty coefficient 

and ET is the execution time of jobs. If two machines 

implement an operation of jobs simultaneously, penalty 

coefficient caused increasing FF1 and the solution will be 

disregarded by COA. 

Assign machines to operations based on the input 

sequence: After calculating the execution time of jobs 

and finding an optimal sequence of jobs on machines, 

turn is the allocation machines based on the input 

sequence. A sequence of jobs that the user will require 

determines which job to which machine should be 

delivered. We use operation-based presentation to 

allocate operation to machines [20]. Since each job 

exactly run on each machine once, in this way, the 

number of jobs exactly appears to the number of machine.  

For example, Fig. 5 shows a sequence of jobs. 

Consider the problem with 4 jobs and 3 resources. Table 

1 shows order of allocation of jobs to machines, and 

require time for executing on each machine. 

Each number in this sequence shows the number of 

jobs. Since each job consists of 3 operations, each job 

exactly appears 3 times in each sequence. The first 

number is observed; number 1 that is the first appearance 

in this sequence indicates the first operation of job 1 and 

by referring in Table 1 executed in machine 1. Next 

number is 1 that is the Second appearance in this 

sequence so, it's indicate to second operation of job 1, by 

referring in Table 1 selected machine 2. Similarly, the 

sequence continues until the final sequence gets the 

machine of each operation. For this example, in the end 

Fig. 6 shows the sequence of machines. In addition, Fig.7 

shows the allocation of jobs to 3 resources. 

 
 

1 1 2 4 3 1 4 2 3 2 4 3 

Fig. 5. A sequence of jobs 

 

1 2 3 1 2 3 3 2 3 1 2 1 

Fig 6. A sequence of resources
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Table I. Allocate jobs to resource with execution time 

Job Machine and 

time of 

operation 1 

(machine/time) 

Machine and 

time of 

operation 2 

(machine/time) 

Machine and 

time of 

operation 3 

(machine/time) 

1 1/2 2/3 3/4 

2 3/4 2/4 1/1 

3 2/2 3/2 1/3 

4 1/3 3/3 2/1 
 

Table II: Parameter settings of PSO and GA algorithms 
 

Algorithm Parameter description 
Parameter 

Value 

PSO 

 

Self-recognition 

coefficient c1 
2 

Social coefficient c2 2 

Weight w 
0.9        0.4 

Max Velocity 
0.01 

GA 

Probability of  crossover 0.5 

Probability of  mutation 0.2 

 

 

Fig. 7. Allocation of jobs to resource  

Calculate idle time of machines: Since the machines 

may be idle during run time, idle time calculating 

machines is important. The aim is minimizing the 

maximum execution time of machines. To ensure the 

assumption that two machines not be allocate to an 

operation at the same time, we define a fitness function to 

prevent the occurrence of this event. Fitness function is 

computed by the (3): 

 

                  (3) 
 

Terminating Conditions: The algorithm terminates 

when an optimal solution gains or the maximum number  

 

of algorithm iterations has been reached. 

 

VIII. EXPERIMENTAL RESULTS 

The CUGA algorithm was implemented using Matlab 

software running under the Win XP operating system on 

a 1.66GHZ CPU with 2GB RAM. In our proposed 

algorithm, we assumed that the crossover rate is 0.5 and 

the mutation rate is 0.2.  

Our proposed algorithm, solve the scheduling problem 

for several different states and the parameters of 

frequency have been studied. The average number of 

iterations for the algorithm to achieve the optimal 

solution and the average time spent in the system are 

presented in tables and figures. Because of the fact that 

our proposed algorithm depends on the input parameters, 

to change the input values and the output of scheduling 

algorithm will be change.  

We have considered a finite number of small-scale 

processors in the grid environment. Each experiment has 

been repeated 10 times and the completion time values of 

best solutions in optimization iterations have been 

recorded. Afterward the minimum time of all the jobs has 

been calculated. Penalty coefficient in (2) and (3) is 

considered 1e2. If we ignore penalty coefficient, it will 

cause increasing in FF1 and FF2 and its condition is not 

considered by COA. CUGA has been compared with 

PSO [8] and GA [21] algorithms based on the execution 

time. The parameter settings of PSO and GA algorithms 

are presented in Table 2 and the results are shown in 

Table 3 and Fig. 8. We can observe in Table 3, by 

increasing the number of jobs, CUGA algorithm has less 

execution time than the other algorithms. Table 3 shows 

the average execution time of algorithms CUGA, GA and 

PSO for various iterations. For example, when maximum 

iterations is 50, the average running time of the CUGA 

algorithm in the grid environment with 4 jobs and 3 

resources are equal to 14.6 seconds, at the same situation, 

for GA algorithm this time is 19.3 seconds and applying 

PSO the spent time is 18.2 seconds. The results show that 

our proposed algorithm does significant improvement in 

grid scheduling environment compared to other 

algorithms. 

 

IX. CONCLUSION AND FUTURE WORKS 

In this paper, we proposed algorithm to solve job 

scheduling problem in grid computing. This algorithm 

profits the advantages of cuckoo optimization algorithm 

and genetic algorithm. To satisfy the user requirements, 

CUGA selects the best resource and compute the 

minimum time for jobs execution on machines. In this 

paper, in order to show the efficiency of the proposed 

algorithm in terms of execution time, a comparison were 

performed employing CUGA algorithm and some other 

algorithms such as GA and PSO. Comparative results 

show that CUGA can considerably reduce time-

consuming required to achieve an optimal solution.  
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Table III: Comparison of the execution time (sec) between CUGA, GA and PSO algorithms 

 

 

 

 

 

 

 

 

Table IV: Average running time (sec) of algorithms for different number of iterations 

 

 

 

 

 

 

 

 

 
 

 
Fig. 8. Comparison of CUGA with GA and PSO, by increasing the number of jobs, the difference of spending times is obvious. 
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