INFORMATION CHANGE THE WORLD

International Journal of Mathematical Sciences and Computing(IJMSC)

ISSN: 2310-9025 (Print), ISSN: 2310-9033 (Online)

Published By: MECS Press

IJMSC Vol.8, No.2, Jun. 2022

A Hybrid Spectral Conjugate Gradient Method with Global Convergence

Full Text (PDF, 344KB), PP.1-10


Views:6   Downloads:1

Author(s)

Jing Li, Shujie Jing

Index Terms

Unconstrained optimization, Strong Wolfe line search, Descending condition, Spectral conjugate gradient method, Global convergence

Abstract

The spectral conjugate gradient (SCG) method is one of the most commonly used methods to solve large- scale nonlinear unconstrained optimization problems. It is also the research and application hot spot of optimization theorists and optimization practitioners. In this paper, a new hybrid spectral conjugate gradient method is proposed based on the classical nonlinear spectral conjugate gradient method. A new parameter  is given. Under the usual assumptions, the descending direction independent of any line search is generated, and it has good convergence performance under the strong Wolfe line  search condition . On a set of test problems, the numerical results show that the algorithm is effective.

Cite This Paper

Jing Li, Shujie Jing," A Hybrid Spectral Conjugate Gradient Method with Global Convergence ", International Journal of Mathematical Sciences and Computing(IJMSC), Vol.8, No.2, pp. 1-10, 2022. DOI: 10.5815/ijmsc.2022.02.01

Reference

[1]Abbas A A,  Hewahi N M, Exploring the Effect of Imaging Techniques Extension to PSO on Neural Networks, International Journal of Image, Graphics and Signal Processing, 12(2)(2020)9-18.

[2]Hussain A,  Yousaf S, Muhammad, et al, An Efficient Genetic Algorithm for Numerical Function Optimization with Two New Crossover Operators, International Journal of Mathematical Sciences and Computing, 4(4) (2018)1-17.

[3]Mamdouh M,  Ezzat M,  H  Hefny, Optimized Planning of Resources Demand Curve in Ground Handling based on Machine Learning Prediction, International Journal of Intelligent Systems and Applications, 13(1)(2021)1-16.

[4]Sharma N,  Batra U,  Zafar S, Inculcating Global Optimization in ZRP through Newfangled Firefly Algorithm, International Journal of Computer Network and Information Security, 11(2)(2019)43-51.

[5]Birgin E G, Martinez J M, A spectral conjugate gradient method for unconstrained optimization, Appl. Math. Optim, 43 (2)(2001) 117-128.

[6]Fletcher R, Reeves C M, Function minimization by conjugate gradients, The computer journal, 7(2)(1964) 149-154.

[7]Polak E , Ribière G, Note sur la convergence de mèthodes de directions conjugèes, Rev. Fran. Inform. Rech. Operationelle, 1(3)(1969) 35-43.

[8]Polyak B T, The conjugate gradient method in extreme problems, USSR Comput. Math. Phys,1969,9(1969): 94-112.

[9]Dai Y H, Yuan Y X, A nonlinear conjugate gradient method with a strong global Convergence property,  SIAM   J. Optim , 10(1999) 177-182.

[10]Hanger W W, Zhang H, A new conjugate gradient method with guaranteed descent and efficient line search,  Siam Optim , 16(1)(2005) 170-192. 

[11]Liu Y L, Storey C S, Efficient generalized conjugate gradient algorithms,  Journal of Optimization Thory  and Applications,69,                  (1991) 129-137.

[12]Andrei  N, New accelerated conjugate gradient algorithms as a modification of  Dai–Yuan's computational scheme for uncons- trained optimization, Journal of Computational & Applied Mathematics, 234(12) (2010)3397-3410.

[13]Deng S, Zhong W, Chen X , An Improved Spectral Conjugate Gradient Algorithm for Nonconvex Unconstrained Optimization Problems, Journal of Optimization Theory and Applications, 2013, 157(3).

[14]Dong Y L, Gen Q X, Symmetric Perry conjugate gradient method,  Computational Optimization and Applications, 56(2)(2013)317-341.

[15]Perry A, A Modified Conjugate Gradient Algorithm, Operations Research, 26(6) (1978)1073-1078.

[16]Zhang Y, Dan B, An efficient adaptive scaling parameter for the spectral conjugate gradient method, Optimization Letters, 10(1)(2016)119-136.

[17]Peyghami M R, Ahmadzadeh  H , Fazli A , A new class of efficient and globally convergent conjugate gradient methods in the Dai–Liao family, Optimization Methods & Software, 30(4)(2015)1-21.

[18]Nezhadhosein S, A Modified Descent Spectral Conjugate Gradient Method for Unconstrained Optimization, Iranian Journal of Science and Technology, Transactions A: Science, (2020)1-12.

[19]Sheekoo A H , Al-Naemi G M ,Global Convergence Condition for a New Spectral Conjugate Gradient Method for Large-Scale Optimization, Journal of Physics: Conference Series, 1879(3)(2021)032001 .

[20]Baluch B, Salleh Z, Alhawarat A, A New Modified Three-Term Hestenes–Stiefel Conjugate Gradient Method with Sufficient Descent Property and Its Global Convergence, Journal of Optimization, 2018(6)(2018)1-13.

[21]Alhawarat A ,  Salleh Z,  Mamat M, et al, An efficient modified Polak–Ribière–Polyak conjugate gradient method with global convergence properties, Optimization Methods & Software, (2016 ) 1-14.

[22]Polak E, Ribiere G, Note sur la convergence de méthodes de directions conjuguées, Esaim Mathematical Modelling & Numerical Analysis, 3(16)(1969)35-43

[23]Hager W W, Zhang H, A survey of nonlinear conjugate gradient methods, Pacific Journal of Optimization, 2(1)(2006)35-58.

[24]Gilbert J C, Nocedal J, Global convergence properties of conjugate gradient methods for optimization, Siam Journal on Optimization, 2(1)(1992)21-42.

[25]Wei Z,Yao S,Liu L,The convergence properties of some new conjugate gradient methods, Applied Mathematics& Computation, 183(2)(2006)1341-1350.

[26]Dai Z, F Wen, Another improved Wei–Yao–Liu nonlinear conjugate gradient method with sufficient descent property, Applied Mathematics & Computation, 218(14)(2012)7421-7430.

[27]Salih Y, Hamoda M A, Rivaie M, New hybrid conjugate gradient method with global convergence properties for unconstrained optimization, Malays J Comput Appl Math ,1(1)(2018) 29–38.

[28]Jian J B, Jiang X Z, Yin J H , Research progress in nonlinear conjugate gradient method,  Journal  of  Yu lin Normal University (Natural Science),37(2)(2016) 3-10.

[29]Zoutendijk G , Nonlinear programming, computational methods, Integer & Nonlinear Programming, (1970)37-86.

[30]Andrei N, An unconstrained optimization test functions collection, Advanced Modeling and Optimization, 10(1)(2008)147-161.